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Introduction
With the rapid development in the fields of genetics, 
biotechnology and genomics, molecular genetic 
profiling will soon become an indispensable tool for 
clinicians to guide individualised management of many 
medical conditions. Precision medicine, also known 
as personalised medicine, refers to the application of 
individual patient- and disease- specific profiles, in the 
light of genetic and genomic data as well as clinical 
and environmental factors, to assess individual risks 
and benefits from medical therapies. We take lung 
adenocarcinoma as an example to illustrate the practice 
of precision medicine along with anti-cancer therapy.

Lung adenocarcinoma in the past era
The understanding and detection of genomic changes in 
lung adenocarcinoma evolved dramatically in the past 
two decades and opened great therapeutic potential 
for non-small cell lung cancer (NSCLC) patients. Back 
in the early 1990s, little could be done to distinguish 
individual subtypes of lung cancers, and most clinical 
trials focused on finding the best platinum-based 
combination therapies1, irrespective of histological 
subtypes2,3. The importance of such differentiation 
was recognised only later after a large randomised 
clinical trial had demonstrated in subgroup analysis a 
survival difference between patients with squamous 
and non-squamous histology treated with different 
chemotherapeutic agents4.  

Lung adenocarcinoma in the current era
The development of tyrosine kinase inhibitors (TKI) 
against epidermal growth factor receptor (EGFR) 
mutated NSCLC opened an era of precision medicine 
in lung cancer and prompted a paradigm shift towards 
development of molecularly targeted agents against 
other putative driver aberrations in NSCLC5. Tumours 
harbouring these distinct and mutually exclusive 
“driver” mutations can be treated with anticancer 
therapies largely in the form of TKI that targets 
respective aberrant gene products. EGFR mutations 
and ALK or ROS1 fusions confer sensitivity to selective 
kinase inhibitors, which in turn dictate the choice of 
therapy5-11. Additional alterations such as BRAFV600E, 
RET fusions, MET exon 14 skipping, MET and ERBB2 
amplifications are found in smaller subsets of patients, 

but when present may also predict response to some 
available targeted inhibitors which are FDA-approved 
therapies for other tumour types12-16.  In other patients, 
defined oncogenic drivers such as NTRK and PIK3CA 
mutations are detected, for which preclinical studies 
have nominated targeted approaches, but the clinical 
utility of such therapies has yet to be established17,18. In 
a prospective comprehensive molecular testing of lung 
adenocarcinoma trial, up to 86.9% (747/860) of patients 
carry potentially actionable somatic alterations (Fig.1)19. 
The prevalence of these somatic alterations in Asian 
ethnicity is expected to be higher due to a much higher 
prevalence of EGFR mutations in both never and ever 
smokers, when compared to studies with patients in 
majority Caucasian ethnicity20. 

 Fig. 1. Potentially actionable oncogenic drivers identified by 
MSK-IMPACT# testing.  
*Figure adopted from reference19.  
# MSK-IMPACT: Memorial Sloan Kettering-Integrated Mutation 
Profiling of Actionable Cancer Targets, a hybridization capture-
based, next-generation sequencing platform or matched tumor: 
normal sequencing to comprehensively profile somatic alterations in 
all known cancer genes in solid tumors. 

Somatic mutations detection methods
The aforementioned driver gene alterations can be 
grouped into three categories – mutations, gene 
rearrangement, and amplifications – and appropriate 
molecular testing should be used for detection21. A 
variety of methods can be used for detecting mutations 
including direct sequencing, real-time polymerase chain 
reactions, and commercial kits (Table 1)21. Fluorescence 
in situ hybridisation (FISH), immunohistochemistry 
(IHC), reverse-transcriptase polymerase chain reaction 
(RT-PCR) and next-generation sequencing (NGS) are 
options for gene rearrangements, while FISH using a 
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locus-specific intensifier (LSI) gene and a chromosome-
specific centromere (CEP) probe is a standard method 
for the detection of gene amplifications (Table 1)21. 
Each testing method has to be validated by well 
conducted clinical trials for corresponding targeted 
therapies and is often developed as a companion 
diagnostic under the FDA approved diagnostic 
framework.   However, as targetable genetic alterations 
are increasingly discovered, individual genotyping 
may become relatively inefficient, especially when 
there is inadequate tissue for successive testing, and 
is drastically costly. NGS technology using DNA or 
RNA is reported to be useful for multiplexed and deep 
genomic sequencing22,23, as well as simultaneously 
detection of gene rearrangements and genes with copy 
number gain. Its application allows comprehensive 
molecular characterisation of lung adenocarcinoma 
before labelling it as “wild” type, for which no available 
target therapies can be employed. Nowadays, targeted 
deep sequencing of selected gene sets (so-called cancer 
panels) has been integrated into daily clinical practice.  
Some local diagnostic laboratories have developed 
platforms for clinicians to order.
Table 1. Representative methods categorized by mechanisms 
of oncogene activation and by targeted molecules.
PCR, polymerase chain reaction; NGS, next-generation 
sequencing; FISH, fluorescence in situ hybridization; 
qPCR, quantitative polymerase chain reaction; RT-PCR, 
reverse transcriptase polymerase chain reaction; IHC, 
immunohistochemistry.
*Table adopted from reference21

 Category Mutation Gene 
rearrangement

Amplification

DNA Direct sequencing
PCR-based methods
NGS

FISH
NGS

FISH
qPCR
NGS

RNA RT-PCR (fusion 
transcript)
NGS

Protein IHC (mutation-
specific antibody)

IHC (protein 
expression)

IHC (protein 
overexpression)

Tackling acquired resistance
Despite an initial benefit from molecularly targeted 
agents in EGFR-mutant and ALK-rearranged NSCLC, 
tumours invariably develop acquired resistance and 
progressive disease. Tumour- or liquid- based re-
biopsy at the time of disease progression is valuable 
for clinicians to understand and tackle the mechanism 
of acquired resistance accordingly. EGFR exon 20 
T790M, for example, is the commonest mechanism 
of resistance after EGFR-TKI and can be effectively 
treated by a third generation T790M mutant specific 
inhibitor  osimert inib 24.  The landmark AURA3 
study drives osimertinib therapy a full approval by 
FDA since Mar 2017 and is currently the only FDA 
approved therapy after EGFR-TKI failure25. Non-
T790M mediated resistance mechanisms include 
activation of alternative bypass pathways (e.g. MET 
or ERBB2 gene amplifications, IGF-1R activation, RET 
rearrangement26), activation of downstream signalling 
of the EGFR (e.g. PTEN downregulation, CRKL gene 
amplification, BRAF mutations, or ERK1/2 reactivation), 
and phenotypic changes such as SCLC transformation 
or epithelial to mesenchymal transition (EMT)27. Apart 

from SCLC transformation which should better be 
treated with etoposide-platinum chemotherapy28, 
the vast majority of these resistance mechanisms tell 
no additional information on the choice of therapy.  
Empirical cytotoxic chemotherapies usually in the 
form of pemetrexed-platinum, with or without 
concurrent antiangiogenic agent, is the only hope to 
control metastatic lesions in current clinical practice. 
Nonetheless, the information could be valuable for 
patients who have exhausted therapeutic options to 
rationalise the choice of molecular targeted therapies 
used for other indications in NSCLC or other cancers.  
For example, monotherapy use of a MET inhibitor in 
EGFR-mutant with MET amplification as the acquired 
resistance mechanism has been advocated29. The pan-
HER dual inhibition trial using afatinib and cetuximab 
in patients with acquired resistance has shown 
an objective response rate of 25% among T790M-
negative patients30. Such dual pan-HER inhibition, 
which occasionally initiates to EGFR-mutant patients 
who have exhausted all therapeutic options, is only 
reasonable in acquired mechanisms other than non-
HER alternative bypass pathways and EMT phenotypic 
change, and to a lesser extent, other than downstream 
signalling activation.

Similarly, the rebiopsy of ALK-rearranged NSCLC 
has provided information on the acquired resistance 
mechanism of crizotinib and other older generation 
ALK inhibitors (ALKi). ALK kinase domain “gatekeeper” 
mutations, including L1196M, C1156Y and G1202R 
among others, have been observed in around a third 
of patients after crizotinib resistance31 and were 
highly variable after new generation ALKi resistance32. 
While L1196M and C1156Y can be effectively treated 
by ceritinib and alectinib, G1202R confers resistance 
to most new generation ALKi except lorlatinib32-34. 
Lorlatinib remains an investigational agent but could 
possibly be obtained under a local investigational early 
access programme with strict patient selection criteria. 
Alice Shaw et al once demonstrated the beauty of 
precision medicine through a patient of ALK-rearranged 
lung cancer who had received multiple ALKi during the 
treatment course, including first-, second-, and third-
generation inhibitors. The eventually acquired L1198F 
mutation on tissue rebiopsy conferred resistance to 
lorlatinib but unexpectedly restored sensitivity to 
crizotinib35. With a rapidly expanding number of new 
ALKi, which include but not exclusively, brigatinib, 
ensatinib, entrectinib, it is likely that resistance 
mechanism detected in rebiopies influences the 
treatment choice in the future era.

Precision immunotherapy in lung cancer
Similar to the advances in targeted therapy, significant 
progress in tumour immunotherapy has resulted in 
several new strategies for cancer therapy, including 
T-cell immune checkpoint inhibitors (ICPI), oncolytic 
viruses, chimeric antigen receptor T cells, among 
others36,37. Immunotherapy is associated with several 
unique features, most notably the potential for 
inducing durable clinical responses, lack of typical drug 
resistance, and induction of autoimmune-like toxicities.  
Currently, the immunotherapy in clinical use among 
lung cancer patients includes pembrolizumab (a PD-1 
Ab) monotherapy in highly selected patients with PDL-1 
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expression over 50% or in combination with pemetrexed-
cisplatin regardless of PDL-1 expression in first line 
situation38,39, while pembrolizumab, nivolumab (a PD-1 
Ab) and atezolizumab (a PDL-1 Ab) monotherapy are 
utilised as second line treatment after platinum-doublet 
chemotherapy40-44. Of note, most of the landmark trials 
establishing the role of immunotherapy carry only a 
small subset or none with EGFR or ALK mutations and 
the presence of which were suggested to be associated 
with lower objective response rate to PD-1 inhibitors. 
MET exon 14 altered lung cancer also carries lower 
response rate of 6.7% to a PD-1 inhibitor, as reported by 
Sabari et al at ASCO 201745. Most of these gene alterations 
are typically associated with a lack of tobacco exposure, 
an expected lower load of mutation burden, and a lower 
rate of PDL-1 expression that contributes to the lack 
of clinical benefit from ICPI.  On the contrary, BRAF 
gene aberration and MET short variants (SV) mutations 
are found to be associated with prolonged time on 
immune checkpoints inhibitor, with MET SV linked with 
increased immune infiltration and an immune activation 
phenotype46. Along with some established roles of 
microsatellite instability and total mutation burden, 
comprehensive molecular comprehensive genomic 
profiling may help further to gauge the degree of benefit 
from an ICPI in the future era.

Conclusion
The management of advanced lung adenocarcinoma 
continues to evolve rapidly due to recent advances 
made in precision medicine diagnostics.  The utilisation 
of comprehensive molecular genotyping allows 
identification of molecular subgroups of patients with 
driver mutations who may benefit from molecularly 
targeted therapies, allows identification of acquired 
resistance mechanism which may confer sensitivities to 
newer or alternative molecularly targeted therapies and 
allows potentially better selection of patients subjecting 
to immunotherapy. Application of precision medicine 
diagnostics in the form of NGS, for its methodological 
complexity, needs extensive trial validation and quality 
control before implementation into routine clinical use.  
It would be a tedious and difficult task, but an ultimate 
goal and a necessary step for all to conquer lung cancer 
in the future.
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Questions 1-10: Please answer T (true) or F (false) 

1. MET exon 14 skipping is one of the potentially actionable somatic alterations.
2. Only up to 30% of lung adenocarcinoma patients carry potentially actionable somatic 

alterations.
3. The prevalence of EGFR mutation among lung cancer patients is higher in Asians than 

Caucasians.
4. The application of next-generation sequencing allows comprehensive molecular characterisation of lung 

adenocarcinoma for potentially actionable somatic alterations.

5. Small cell lung cancer transformation is one of the non-T790M mediated resistance mechanisms for EGFR 
mutated adenocarcinoma of lung patients who progress on 1st line EGFR-TKI.

6. The spectrum of additional ALK domain mutations after ALK inhibitors is similar among all newer 
generation ALK inhibitors.

7. The ALK G1202R mutation confers resistance to most new generation ALK inhibitors except lorlatinib.

8. MET exon 14 altered lung cancers have expected excellent treatment outcome to an immune checkpoint 
inhibitor.

9. Comprehensive molecular comprehensive genomic profiling may help to predict who is likely to respond 
to immune checkpoint inhibitors.

10. The application of precision medicine diagnostics in the form of NGS is in extensive regional usage, and 
quality control is not necessary for clinical use.
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